Code-Oriented Global Design Parameters for Moment-Resisting Steel Frames with Metallic Structural Fuses
نویسندگان
چکیده
In this paper, the authors summarize the results of a parametric study devoted to evaluate the seismic behavior of low to medium rise regular special moment-resisting steel frames with hysteretic energy dissipation devices mounted on chevron steel bracing. For that purpose, 270 different building models were designed considering typical story heights and bay widths used in Mexican practice. The parameters under study were (1) number of stories: 5, 10, 15, 20, and 25, (2) elastic stiffness ratios (α) between the moment frame system and the whole structure (frame-bracing-hysteretic device system): α = 0.25, 0.50, and 0.75, (3) different elastic stiffness balances (β) between the hysteretic device and the supporting braces: β = 0.25, 0.50, and 0.75, (4) postto pre-yielding stiffness ratios (K2/KELD) for the hysteretic devices of 0.0 (elastic-perfectly plastic), 0.03, and 0.05, and (5) two angles of inclination of the chevron braces with respect to the horizontal axis (θ): 40° and 45°. From the results obtained in this study, optimal stiffness balances α and β are defined to obtain a suitable mechanism where the hysteretic devices yield first and develop their maximum local displacement ductility μ, whereas incipient yielding is only formed at beam ends of the moment frame. Observations are done with respect to: (a) the global ductility capacity for the structure and its relationships with the local displacement ductility capacity for the hysteretic devices for a given combination of α, β, K2/KELD, and θ and (b) overstrength factors (Ω) for design purposes.
منابع مشابه
PERFORMANCE BASED DESIGN OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES INCORPORATING SEISMIC DEMAND AND CONNECTION PARAMETERS UNCERTAINTIES
One of the most important problems discussed recently in structural engineering is the structural reliability analysis considering uncertainties. To have an efficient optimization process for designing a safe structure, firstly it is required to study the effects of uncertainties on the seismic performance of structure and then incorporate these effects on the optimization process. In this stud...
متن کاملSEISMIC OPTIMIZATION OF STEEL MOMENT RESISTING FRAMES CONSIDERING SOIL-STRUCTURE INTERACTION
The main purpose of the present work is to investigate the impact of soil-structure interaction on performance-based design optimization of steel moment resisting frame (MRF) structures. To this end, the seismic performance of optimally designed MRFs with rigid supports is compared with that of the optimal designs with a flexible base in the context of performance-based design. Two efficient me...
متن کاملASSESSMENT OF DUCTILITY REDUCTION FACTOR FOR OPTIMUM SEISMIC DESIGNED STEEL MOMENT-RESISTING FRAMES
In the present study, ten steel-moment resisting frames (SMRFs) having different numbers of stories ranging from 3 to 20 stories and fundamental periods of vibration ranging from 0.3 to 3.0 second were optimized subjected to a set of earthquake ground motions using the concept of uniform damage distribution along the height of the structures. Based on the step-by-step optimization algorithm dev...
متن کاملA Technique for Seismic Rehabilitation of Damaged Steel Moment Resisting Frames
Moment resisting frames as one of the conventional lateral load resisting systems in buildings suffer from some limitations including code limitations on minimum span-to-depth ratio to ensure the formation of plastic hinges with adequate length at beam ends. According to seismic codes, in ordinary steel moment resisting frames the minimum span-to-depth ratios should be limited to 5 and in speci...
متن کاملA COMPARATIVE STUDY OF OPTIMUM AND IRANIAN SEISMIC DESIGN FORCE DISTRIBUTIONS FOR STEEL MOMENT RESISTING BUILDINGS
In this study, constant-ductility optimization algorithm under a family of earthquake ground motions is utilized to achieve uniform damage distribution over the height of steel moment resisting frames (SMRFs). SMRF structures with stiffness-degrading hysteric behavior are modeled as single-bay generic frame in which the plastic hinge is confined only at the beam ends and the bottom of the first...
متن کامل